Алгебра — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различныхалгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Классификация:
Алгебру можно грубо разделить на следующие категории:
- Элементарная алгебра, которая изучает свойства операций с вещественными числами, где символами обозначаются постоянные и переменные, а также правила преобразования математических выражений и уравнений с использованием этих символов. Обычно преподаётся в школе под названиемалгебра[3]. Университетские курсы теории групп тоже можно назвать элементарной алгеброй.
- Общая алгебра, иногда называемая современной алгеброй или абстрактной алгеброй, где алгебраические структуры, такие, как группы, кольца иполя аксиоматизируются и изучаются.
- Линейная алгебра, в которой изучаются свойства векторных пространств (включая матрицы).
- Универсальная алгебра, в которой изучаются свойства, общие для всех алгебраических структур (считается подразделом общей алгебры).
- Алгебраическая комбинаторика, в которой методы абстрактной алгебры используются для изучения вопросов комбинаторики.
Элементарная алгебра:
Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a, b, c, x, y и так далее). Такой подход полезен, потому что:
- Позволяет получить общее представление законов арифметики (например, a+b=b+a для любых a и b), что является первым шагом к систематическому изучению свойств действительных чисел.
- Позволяет ввести понятие «неизвестного», сформулировать уравнения и изучать способы их решения. (Для примера, «Найти число x, такое что 3x + 1 = 10» или, в более общем случае, «Найти число x, такое, что ax + b = c». Это приводит к выводу, что нахождение значения переменной кроется не в природе чисел из уравнения, а в операциях между ними.)
- Позволяет сформулировать понятие функции. (Для примера, «Если вы продали x билетов, то ваша прибыль составит 3x − 10 рублей, или f(x) = 3x − 10, где f — функция, и x — число, от которого зависит функция.»)
Линейная алгебра:
Линейная алгебра — часть алгебры, изучающая векторы, векторные, или линейные пространства, линейные отображения и системы линейных уравнений. К линейной алгебре также относят теорию определителей, теорию матриц, теорию форм (например, квадратичных), теорию инвариантов (частично), тензорное исчисление (частично)[4]. Современная линейная алгебра делает акцент на изучении векторных пространств[5].
Линейное, или векторное пространство над полем — это упорядоченная четвёрка , где
- — непустое множество элементов произвольной природы, которые называются векторами;
- — (алгебраическое) поле, элементы которого называются скалярами;
- — операция сложения векторов, сопоставляющая каждой паре элементов множества единственный элемент множества , обозначаемый ;
- — операция умножения векторов на скаляры, сопоставляющая каждому элементу поля и каждому элементу множества единственный элемент множества , обозначаемый ;
причём заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:
- , для любых (коммутативность сложения);
- , для любых (ассоциативность сложения);
- существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности не пусто;
- для любого существует такой элемент , что (существование противоположного элемента относительно сложения).
- (ассоциативность умножения на скаляр);
- (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).
- (дистрибутивность умножения на вектор относительно сложения скаляров);
- (дистрибутивность умножения на скаляр относительно сложения векторов).
Евклидовы пространства, аффинные пространства, а также многие другие пространства, изучаемые в геометрии, определяются на основе векторного пространства. Автоморфизмы векторного пространства над полем образуют группу относительно умножения, изоморфную группе невырожденных квадратных матриц, что связывает линейную алгебру с теорией групп, в частности, с теорией линейных представлений групп[5].
Переход от используемых в линейной алгебре n-мерных векторных пространств к бесконечномерным линейным пространствам нашёл своё отражение в некоторых разделах функционального анализа[4]. Другим естественным обобщением является использование не поля, а произвольного кольца. Для модуля над произвольным кольцом не выполняются основные теоремы линейной алгебры. Общие свойства векторных пространств над полем и модулей над кольцом изучаются в алгебраической К-теории.
Общая алгебра:
Общая алгебра занимается изучением различных алгебраических систем. В ней рассматриваются свойства операций над объектами независимо от собственно природы объектов[2]. Она включает в себя в первую очередь теории групп и колец. Общие свойства, характерные для обоих видов алгебраических систем, привели к рассмотрению новых алгебраических систем: решёток, категорий, универсальных алгебр, моделей, полугрупп и квазигрупп. Упорядоченные и топологические алгебры, частично упорядоченные и топологические группы и кольца, также относятся к общей алгебре[6].
Точная граница общей алгебры не определена. К ней можно также отнести теорию полей, конечных групп, конечномерных алгебр Ли[6].
Теория групп:
Непустое множество с заданной на нём бинарной операцией называется группой , если выполнены следующие аксиомы:
- ассоциативность: ;
- наличие нейтрального элемента: ;
- наличие обратного элемента:
Понятие группы возникло в результате формального описания симметрии и эквивалентности геометрических объектов. В теории Галуа, которая и дала начало понятию группы, группы используются для описания симметрии уравнений, корнями которых являются корни некоторого полиномиального уравнения. Группы повсеместно используются в математике и естественных науках, часто для обнаружения внутренней симметрии объектов (группы автоморфизмов). Почти все структуры общей алгебры — частные случаи групп.
Теория колец:
Кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые сложение и умножение), со следующими свойствами:
- — коммутативность сложения;
- — ассоциативность сложения;
- — существование нейтрального элемента относительно сложения;
- — существование противоположного элемента относительно сложения;
- — ассоциативность умножения (некоторые авторы не требуют выполнения этой аксиомы[7])
- — дистрибутивность.
Исторический очерк:
Истоки алгебры уходят к временам глубокой древности. Арифметические действия над натуральными числами и дробями — простейшие алгебраические операции — встречаются в ранних математических текстах. Ещё в 1650 году до н. э. египетские писцы могли решать отвлечённые уравнения первой степени и простейшие уравнения второй степени, к ним относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса (так называемые задачи на «аха»). Предполагается, что решение задач было основано на правиле ложного положения. Это же правило, правда, крайне редко, использовали вавилоняне.
Вавилонские математики умели решать квадратные уравнения. Они имели дело только с положительными коэффициентами и корнями уравнения, так как не знали отрицательных чисел. По разным реконструкциям в Вавилоне знали либо правило для квадрата суммы, либо правило для произведения суммы и разности, вместе с тем метод вычисления корня полностью соответствует современной формуле. Встречаются и уравнения третьей степени. Кроме того, в Вавилоне была введена особая терминология, использовались шумерские клинописные знаки для обозначения первого неизвестного («длины»), второго неизвестного («ширины»), третьего неизвестного («глубины»), а также различных производных величин («поля» как произведения «длины» и «ширины», «объёма» как произведения «длины», «ширины» и «глубины»), которые можно считать математическими символами, так как в обычной речи уже использовался аккадский язык. Несмотря на явное геометрическое происхождение задач и терминов, использовались они отвлечённо, в частности, «площадь» и «длина» считались однородными. Для решения квадратных уравнений было необходимо уметь осуществлять различные тождественные алгебраические преобразования, оперировать неизвестными величинами. Таким образом был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами.
Алгебра, нужная все нам, так увлекательна!
ОтветитьУдалитьОставайтесь с нами, чтобы получать свежие новости!